
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1996

Automation of real-time X-ray scans
Madhusudhan R. Midhe
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Midhe, Madhusudhan R., "Automation of real-time X-ray scans" (1996). Retrospective Theses and Dissertations. 240.
https://lib.dr.iastate.edu/rtd/240

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Frtd%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/240?utm_source=lib.dr.iastate.edu%2Frtd%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Automation of real-time X-ray scans

by

Madhusudhan Rao Midhe

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Major Professors: Doug W Jacobson and Joe Gray

Iowa State University

Ames, Iowa

1996

Copyright@ Madhusudhan Rao Midhe, 1996. All rights reserved.

www.manaraa.com

11

Graduate College
Iowa State University

This is to certify that the Master's thesis of

Madhusudhan Rao Midhe

has met the thesis requirements of Iowa State University

Committee Member

Co-major Professor

Co-major Professor

For the Major Program

For the Graduate College

www.manaraa.com

111

DEDICATION

To my parents and to my brother without whose support I wouldn't be at this

position and to my friend Bhanu for his constant encouragement and support.

www.manaraa.com

IV

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

1 INTRODUCTION ...

1.1 Motivation and Goal of this Research .

1.2 Organization of the Thesis

2 LABORATORY SETUP AND LIBRARY FUNCTIONS

2.1 Laboratory Setup

2.1.1 Network Access and Control

2.2 RMover: Current Motion Control Program . .

2.3 XR Vision: Image Processing Hardware/Software

3 XRSCAN: THE NEW SOFTWARE DEVELOPED

3.1 Drawbacks of the Current Programs .

3.2 Software Development

3.2.1 Motion Control

3.2.2 Image Acquisition .

3.2.3 X-ray Generator Control .

4 AUTOMATION OF REAL-TIME SCANS

4.1 Basic Setup

4.2 Functionality of the Program

.....

5 RESULTS, CONCLUSIONS AND FUTURE WORK

5.1 Results

• • • • • • VII

......

......

1

4

6

7

7

10

13

18

20

20

22

22

27

32

34

34

36

42

42

www.manaraa.com

v

5.2 Conclusions . 46

5.3 Future Developments . 48

APPENDIX A CONFIGURATION FILES REQUIRED FOR PRO-

GRAM OPERATION . 50

APPENDIX B SOURCE CODE FOR SAVING AN XRV FILE 52

APPENDIX C DEFAULT FILE FOR AUTOMATED SCANS 54

APPENDIX D RMOTION .H : HEADER FILE LISTING THE FUNC-

TIONS AVAILABLE FOR MOTION CONTROL 55

BIBLIOGRAPHY . 62

www.manaraa.com

Figure 1.1

Figure 2.1

Figure 2.2

Figure 2.3

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 4.1

Figure 5.1

Figure 5.2

Figure 5.3

VI

LIST OF FIGURES

Figure showing the basic setup needed for real-time radiography

Laboratory setup .

Client/ server model

Flow chart of a Windows based non blocking server

Program main window

Direction of the axes .

Setup window incorporating the three different packages ..

Options window for speed and acceleration settings

Interface of the frame averaging window . .

Accumulate window

Histogram of an image accumulated over 256 frames .

Automatic scan window

4

8

12

14

22

23

25

26

28

29

30

35

Visual image of a sample aluminium panel used in the studies. . 43

An accumulated image before subtraction 46

Accumulated image after subtraction . . . 4 7

www.manaraa.com

Vll

ACKNOWLEDGEMENTS

My primary thanks go to Dr. Terrence Jensen, without whose guidance and support,

this research work wouldn't be a possibility. I wish to express my deepest appreciation for

his constant guidance and also for pouring over every inch of this report with painstaking

attention to detail and making a semi-infinite number of helpful suggestions. I also would

like to thank Dr. Joe Gray for his continual support and encouragement. I would also like

to thank Dr. Doug Jacobson, my major advisor for his valuable time and cooperation. I

am also grateful to Dr. Charles Wright for his valuable time. This work was supported

by the FAA Center for Aviation Systems Reliability program under Federal Aviation

Administration Grant No. 95G-032.

Finally, I would like to thank all those at the Center for NDE for helping me make

this project a success. I sincerely appreciate their effort.

www.manaraa.com

1

1 INTRODUCTION

The present day needs of the commercial market have forced the industry to man­

ufacture materials which are stronger, weigh less and cost less. In other words, it is of

prime concern to characterize the material properties. The characterization of a material

can be done either at the time of fabrication or while the material is being used.

A material can be tested in two ways, destructively or non-destructively. In de­

structive means of testing materials, a sample is selected randomly from a batch and is

inspected thoroughly and the results are extrapolated in a manner so that they repre­

sent the whole batch. Since there is a need of high performance parts to be inspected

while they are in use, this method of testing cannot be used. Hence, there is a need for

alternate means of testing these type of materials which is answered by nondestructive

testing.

Nondestructive evaluation (NDE) is a way by which one can inspect a material or

a structure without disrupting its serviceability. Aircraft industry is a prime example

which shows the prime importance of NDE. With newer light weight materials being

used for the manufacture of the aircraft, there is a need for a more strenuous testing

procedure so that the parts are not compromised while they are in use. Also, the

inspection systems must be capable of handling a variety of materials like aluminum

and nickel used in the manufacturing of aircraft. Also, the inspection systems must be

fast enough while keeping the cost associated with them to the bare minimum.

Primarily, three inspection methods of testing a material are available at the Center

for Nondestructive Evaluation: X-ray radiography, ultrasonic testing and eddy current

www.manaraa.com

2

testing. The idea behind all these techniques is the same. Energy is being introduced into

the sample from a source to interact with the sample. This interaction is characterized

by a detector to detect any flaws in the sample. Eddy current techniques are used for

determining the surface cracks and their length in materials. Ultrasonic technology is

used for in-service inspection of composite panels for delamination and detection of crack

problems, process control monitoring, and to detect voids in materials. Ultrasonic and

eddy current methods of non-destructive testing work fine for objects with few facets and

uniform composition, but the present day objects with complex shapes with multiple

facets present a challenge to these techniques and they often fail in detecting voids or

defects in such materials. Hence, X-ray based NDE techniques have remained a prime

means of testing complex castings. My research primarily focuses on this aspect, X-ray

radiography and more precisely, real-time radiography.

In X-ray radiography, a source would generate a beam of high energy electrons which

are made to collide with a target thus producing a beam of photons whose energy will

be in the X-ray energy range. In a typical instance of characterizing a material with

X-rays, a sample will be kept in between an X-ray generator and an X-ray sensitive film.

Depending upon the density and various other properties of that material, some of the

X-rays will be attenuated, some will be scattered and some will be passed through the

object under inspection. These X-rays which are passed through the object after some

attenuation form a latent image which is captured onto a sensitive film.

Since X-ray inspectability is extremely dependent upon crack opening and orienta­

tion, there exists a need to quantitatively assess the detectability of cracks for various

crack geometries. But, several disadvantages are associated with film radiography; the

amount of time it takes to develop the film and the cost of the film. Real-time radio­

graphy, which uses an X-ray to light converter device (image intensifier) proves to be

a better method of testing these cracks compared to film-radiography [13]. This is due

to the fact that one can see a scanned image as soon as X-rays are passed through the

www.manaraa.com

3

sample unlike in film-radiography. Also, crack orientation plays a crucial deciding factor

of these two methods of radiography. One can obtain good results with film radiography

if one has prior knowledge about the crack opening and orientation. Since, in real life

this is not available, there is every chance that the crack can go undetected if the crack

is not aligned properly with the X-ray beam. For such alignment, one has to move the

sample in various directions and real-time radiography makes it much faster thereby in­

creasing the detectability of the crack compared to film-radiography. But the advantage

of film radiography over real-time radiography is its ability to store in archival records

for a long time.

In order to expedite the X-ray imaging process, a good approach would be to absorb

the transmitted X-rays and convert them into light using an X-ray to light converter

rather than using a film to absorb the radiations. This is called real-time radiography as

the radiations are absorbed, converted to light and the resultant image is displayed onto

a monitor using a camera instantly unlike in film radiography. This method of inspection

along with film radiography is carried on at the Center for NDE. Figure 1.1 gives an

outline of the real-time radiography inspection method (4]. The sample to be inspected

is placed on the sample positioner between the X-ray source and image intensifier as in

film radiography but instead of a film, an image intensifier is used. An image intensifier

absorbs the incident X-rays, converts them to visible light and amplifies that visible light

which can either be seen by a human eye or can be recorded by a CCD camera. This

camera in association with a frame grabber and a host computer can be used to enhance

this light and do some image processing of the resultant image from the camera output

to obtain a better picture. The host computer will control the motion of the sample

positioner and also the image acquired.

www.manaraa.com

4

Sample Positioner
Camera

I Mon;to• I

Figure 1.1 Figure showing the basic setup needed for real-time radiography

1.1 Motivation and Goal of this Research

The width and the orientation of a crack play a crucial role in its detection. Many

times while scanning a material to detect cracks in it, it happens that the X-ray beam

is not aligned properly with the crack opening. This might result in the flaw going un­

detected even though sufficient equipment are available to detect the crack. An aircraft

presents a prime example for these kinds of cracks. Whenever an aircraft leaves ground

and flies high into the air, it will be subject to repeated cycles of stress on its body due

to the pressure difference in the cabin and outside atmosphere. Again while landing, the

external pressure will be the same as inside and this process of take-off and landing of

the aircraft takes place many times in its life-time, subjecting its body to heavy stress

every day and the result is the formation of the cracks on its body. This is fatigue in the

areas joined by rivets. These rivet held metal plates tend to separate due to this stress

and they start forming cracks as an indication of this. These cracks will tend to grow

linearly until a point, and very rapidly after that. This forces the industry to detect such

sort of cracks at an earlier stage before they tend to grow rapidly. More pronouncedly,

www.manaraa.com

5

these cracks are shown in aging aircraft which are being used beyond their design life.

The capability of detecting such sort of cracks before they reach the point they tend

to grow rapidly enables one to replace the defective part before the aircraft is damaged

any more. Eddy current techniques produce good results for plain surfaces, but if the

inspection area contains rivets, they produce results which aren't so obvious. Eddy cur­

rent signals for a scan taken in the vicinity of a rivet will have the same strength both

for the rivet opening and the crack under the rivet. X-rays provide reasonable results

for such sort of cracks though they are limited by the size of the crack under the rivet

head. The width and the angle of the crack opening become the key factors in detecting

the crack.

In order to detect such narrow cracks one might need to either translate (move in x,y

and z directions) or rotate the sample or source in different directions for aligning the

crack opening in the direction of the X-ray beam, so that the crack can be seen on the

monitor. In this process of aligning, there is every chance that one might repeatedly be

doing the same thing again and again, like, moving the sample in a particular direction

with all other parameters like the kV and rnA for generating X-rays remaining the

same. This obviously is a heavily time consuming process. Also, since it is not possible

to move a large sample like an aircraft on a typical sample positioner, it is well worth the

effort to have the capability of moving the source too, in which case there is no need of

moving the sample. In order to expedite the process and also to decrease the amount of

monotonous work involved in this procedure of detecting the flaws, it would be a good

idea to automate this entire process of the movement of the sample and also the source

in order to align the crack opening in the proper direction to be able to detect the crack

of reasonable size. The basic idea behind this project is this automation of the entire

procedure. This thesis explains how this has been implemented.

www.manaraa.com

6

1.2 Organization of the Thesis

This project deals with the basic automation of the otherwise manually performed

functions used in real-time X-ray radiography. Chapter 2 gives the general background

on stepper-motor control and the existing laboratory set up. Also, it explains the two

software packages XR Vision and RMover. Chapter 3 deals with the drawbacks of

these two packages and what could be done to overcome their principal drawbacks.

It also explains how the existing two packages have been incorporated into one with

lots of additional features included in it. Chapter 4 provides a sample scan file for

automatic scan control and explains how the sample scan file is being read and handled

by the program. Finally, Chapter 5 provides the experimental results obtained with this

program and compares them with the results obtained with the existing programs. It

also includes the conclusion of this thesis with future developments in this field.

www.manaraa.com

7

2 LABORATORY SETUP AND LIBRARY FUNCTIONS

This chapter will cover the aspects and details of the two principal packages in use at

the Center for Non Destructive Evaluation for real-time radiography. The first one is the

motion control program (RMover) responsible for the motion of the sample positioner

and the second one is the XR Vision program, the image acquisition software package. A

basic picture showing the setup of the machines in the laboratory and a brief explanation

of the packages will present a clear picture of the functioning of these two packages.

2.1 Laboratory Setup

Figure 2.1 depicts the current laboratory setup. The primary part of the setup is

an X-ray generator or source which generates the X-ray beam. The source contains a

heated element and a target. Whenever the electrons generated by a heated filament are

accelerated through a very high potential region on the order of a few hundred kilovolts

and made to hit a target like tungsten, they produce bremsstrahlung X-ray photons.

An X-ray tube [6] is designed in such a way that it accelerates electrons in vacuum and

makes them collide with a target of high density and high melting point like tungsten.

An X-ray generator is the combination of such an X-ray tube and an electrical apparatus

designed to generate and control electrical energy for applying to the X-ray tube. The

existing laboratory contains two X-ray generators, a broad focus IRT320 and a micro

focus FXE-200.50. The two generators differ from each other in their maximum level

of the accelerating voltages, their beam spot size and also in their power levels. The

www.manaraa.com

8

accelerating voltage is in the range of 20-200kV for FXE-200.50 and in the range of

20-320kV for the IRT320. The beam spot size and power level of FXE-200.50 are 10ttm

and 200W respectively. Whereas, for IRT320 the beam spot size and the power level are

lmm and 3200W, respectively.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~: 
X-ray Generator ~ v Sample Positioner 

1 

j 

x Serial ~~ 1'1_ 
--------' Port Frnm>J ~ Frame 

Processor ~ f Grabber 

Innovation 
Networked Computers EJlectra D 

I /) Monitor 

I /) ..__ __ __,y 

Figure 2.1 Laboratory setup 

The sample positioner (from DAEDAL Inc.) serves as the pedestal for any object 

under inspection and this can be translated either in the x,y, and z axes or can be rotated 

in 4> and B. The positioner is being controlled by two PCs with the PC23 Indexer cards 

[1] serving as the interface between the computer and the motors. A Compumotor PC23 

is a microprocessor-based indexer that is designed to be inserted into a single open slot 

in the computer expansion bus or 1/0 channel. Manufactured as a single board, the 

PC23 can control up to three axes of any Compumotor system. The PC23 uses a 16-bit 

processor with custom circuits to simplify generation of motion profiles and shorten the 



www.manaraa.com

9 

processing time. The PC23 receives acceleration, velocity and position information from 

the computer in ASCII format. Two PC23 Indexer cards are used to handle all the 5 

different axes. 

The two PCs are connected by a network through Windows for Work Groups 3.11, 

and two way communication between these two computers, one serving as a server and 

the other as a client, is possible. The PCs run MS-Windows version 3.11 operating 

system. The two PCs are named Electra and Innovation. The need for connecting these 

two PCs arises due to the limitation of the IRQ and DMA controls. For the motion 

control program Innovation serves as server and Electra as client. The PC23 indexer 

card on Electra serves for the movement of the sample positioner motors in {) and <P 

directions, whereas the one on the Innovation controls the motion of the motors in x, y, 

and z directions. 

An image intensifier is used as an alternative to a radiograph for acquiring an X-ray 

image in real time. An X-ray to light converter in the image intensifier forms the core 

part of the real-time radiography. The absorbed image from the image intensifier can 

either be seen by a naked eye (image would be very small) or can be visualized using a 

CCD camera connected to the image intensifier. 

A monochrome CCD camera converts the optical image into a video camera signal 

(RS-170) which is further digitized by the frame grabber. A primary disadvantage of a 

CCD camera is the small size of its sensitive surface. A lens is required to focus an image 

onto the CCD element. A typical CCD will have 512 X 512 pixels with each having a 

size of about 20X20pm. Each element of the CCD imager is sensitive to light and each 

pixel stores the charge proportional to the input light and there is also a maximum limit 

on the charge collecting capability of each element. 

An 8-bit frame grabber on a single IBM PC AT plug-in board (Data Translation 

model DT2867) with built in processing circuitry for real-time frame averaging and two 

frame arithmetic and logic operations is used to digitize the RS-170 signal. In addition to 



www.manaraa.com

10 

a 16-bit image buffer for video-rate true frame averaging, the board has two 8-bit buffers 

for secondary image storage and display. The main advantages of the DT2867 board for 

being used as frame grabber are real-time image capturing capability, selectable input 

gain and offset and the ability to accommodate low light signals with full resolution. 

The frame digitizer is a versatile piece of hardware which can be accessed remotely by 

the existing XR Vision program (which will be discussed later in the chapter). 

Due to the high energy radiations from the X-ray generator and scattered radiations, 

the X-ray generator, sample positioner, image intensifier and the camera are all enclosed 

in a radiation shielded vault. The interlock facility provides another level of safety which 

ensures the X-ray generator can be turned on only when the door has been properly shut 

preventing the people outside of the room from receiving any unwanted radiations. The 

X-ray generators and the sample positioner can be controlled remotely by the host PC 

via a serial link and from any other PC by Winsockets. The host PC has been connected 

to the network by an Ethernet cable with a unique IP address for network access. 

2.1.1 Network Access and Control 

For the smooth movement of the sample positioner in different directions the two 

PC23 indexer cards should be accessed. But owing to the limitations of the IRQ and 

DMA controls, the two PC23 indexer cards cannot be plugged in to Electra which 

currently holds 6 cards in its back plane. Since a PC can access cards only with three 

IRQs and since two IRQs have already been taken away by other boards leaving only 

one IRQ control for controlling the two PC23 indexer cards. Hence there is a need that 

one PC23 indexer card be plugged into a different PC and must be networked to access 

it. So, the two computers Electra and Innovation hold one PC23 card each, and are 

connected to the network through Ethernet cards enabling the remote control of the 

hardware connected to these two PCs. The network software can even transfer the data 

collected on one machine to be saved on a remote machine [11], [12]. 



www.manaraa.com

11 

The network access can be obtained through Microsoft's Winsockets 1.1 [9] running 

under Windows for Work Groups. Windows supports four mechanisms of interprocess 

communication : 

• dynamic data exchange (DDE) 

• shared memory in dynamic link libraries (DLLs) 

• clipboard 

• Winsockets 

Of all the four mechanisms only Winsockets can be used for communication between 

two different computers which are connected to the network by Ethernet. A Windows 

program is an executable file that generally creates one or more windows and uses a 

message loop to receive the user input. A server is a program which has the data and 

is willing to share the data with its clients. DDE [10] is a message based system in 

which data needs to be transmitted with messages. Since, Windows allows only two 

parameter values, wParam (WORD) and lParam (DWORD) for data transfer one can 

use DDE for sending messages which are not very big in size like sending PC23 Indexer 

card commands. But, using DDE, there is not enough room to transmit information 

on the order of a 512 X 512 image. One way to send the data would be to break the 

image into pieces to transmit it, but this would take a long time to send an image across 

the network owing to the fact that data can be sent at a maximum rate of 8 bytes at a 

time. So, DDE fails to serve the purpose for this sort of application. DLLs can't be used 

as the data can be transferred only between stacks on the same machine. Clipboards 

allow data (which is in a particular format such as a text, a bitmap or metafile) to be 

transferred from one program to the other. When a program uses clipboard for data 

transfer, it copies the message or text or file that needs to be transferred into a memory 

area. It allocates a global handle to this area. The program then opens the clipboard 



www.manaraa.com

12 

and passes the global handle to it thus transferring the data. The disadvantage in using 

the eli p board is that the memory handle, generated while transferring the data, cannot 

be used by the calling program once it is passed on to the clipboard. Hence, to use the 

memory handle again, the program has to allocate memory and a handle to it again, 

thus consuming unnecessary memory twice. This leaves us with the option of using 

only Winsockets for the network data transfer. Also, Winsockets are initialized on the 

Electra and Innovation machines [11]. Hence, it will be easy to do the network transfer 

using Winsockets, rather than implementing something new from scratch which has a 

little advantage over Winsockets. 

(Generator) 

/.s-232 
WinSocket ~ 

• • Server 

--------
( Frame Grabber J 

Figure 2.2 Client/server model 

2.1.1.1 Design issues 

The standard model for network applications is a client/server model and is shown 

in Figure 2.2. The client and server require a set of standard protocols to enable them 

to establish a connection between each other. The server will be running continuously 

and will listen at the well known address and "wakes up" at the request of the client 

for a connection. To establish this connection, each process establishes a socket system 

call which returns an integer value socket identifier, SID, the same as a file descriptor, 



www.manaraa.com

13 

identifying the connection. The socket call would even specify the type of the communi­

cation protocol supported by it. A structure has been defined for windows sockets to be 

compatible over different protocol families, each with different address formats and ad­

dress lengths. The five parameters of the structure; namely, the protocol, local address, 

local process, foreign address and foreign process, must contain valid data before any 

data transfer can take place between the client and the server. Any process running on 

a PC can be identified with the Internet address of that PC and the process ID obtained 

from the operating system. This allows two processes to communicate via Winsockets 

with each containing a valid five tuple structure. 

Figure 2.3 shows the flow chart for the server software [7]. Whenever the client 

wishes to communicate with the server, it will execute some system calls. The first 

step toward this will be to create a socket, and for this the client executes the socket 

system call. The socket call would assign the protocol field of the above discussed five­

tuple structure. Once the type of the protocol has been specified, the server "binds" a 

socket descriptor returned by the "socket" system call to a protocol specific address and 

also lets the system know that this address is owned by this process and any messages 

received for this address are to be given to it. The server would "listen" on this socket 

for an active connection from a client. The server then will execute an "accept" system 

call to let the client know that the server has processed and accepted its request. Using 

the "connect" system call, the client process connects with the server and will assign a 

socket descriptor to identify the connection. 

2.2 RMover: Current Motion Control Program 

This program gives the user a high level control of positioners using a PC23 Indexer 

card and M C5300 controller. The existing motion control program RMover, connects 

two different PCs on the same guidelines as described above. Here, Electra functions 



www.manaraa.com

14 

Register with 
Windows to inform 

--------.1 
Client connection req. about client 

connection requests 

client closed connection 

Client closed connection 

Register with 
Windows to inform 

about data packet arriv I 

and client termination 

acket 

Data Packet 

Decipher the data 

packet and execute 
the command 

Figure 2.3 Flow chart of a Windows based non blocking server 



www.manaraa.com

15 

as client and Innovation as server. If the client has to access the PC23 indexer card on 

the server, it should have a source module [7] that will implement the network access 

of the PC23 card in the main program. The RMover program has a C++ [8], [16] class 

called Motor declared in its header file Motion.h, for accessing the PC23 card on the 

local machine and another class Rmotor declared in Rmotion.h (shown in Appendix D) 

for accessing the PC23 Indexer card on the remote machine or on the server. A class 

contains three different sections called private, protected and public. Each of these 

sections contains different members referred to as member functions. The private and 

protected member functions of a class are not visible to any program outside of that 

class and they can be accessed only by the public member functions of that class. Also, 

each class will have a constructor which will build an object with all the attributes of 

that class by taking in the necessary parameters. The member functions of the class 

can be accessed by calling "object.memberfunction". One can add as many member 

functions as they want by simply declaring them in the class and then writing the code 

for that declaration. 

As soon as the program is executed, the client would try to connect with the server 

whose Ethernet address will be provided in advance. Once the client is connected to the 

server, the data transfer between the server and the client will take place in standard 

packet size. The PC23 Indexer card [1] accepts commands in ASCII format from the 

computer and will send them to an adaptor box through a cable. This adaptor box will 

send appropriate commands to the drives of the corresponding axes (each axis will have 

a separate drive). 

The program will read a configuration file called motors.cfg (a sample file is shown 

in Appendix A), which contains all of the details pertaining to the motors, such as 

the number of motors, their PC23 Indexer card addresses and the name of the axis 

they correspond to. Upon reading from the configuration file, the program will create 

a standard interface structure, one for each motor. The interface structure contains the 



www.manaraa.com

16 

name of the axis, edit boxes for acceleration, distance to move and velocity settings. 

Also, there is an option to choose whether one wishes to move the positioner in a 

particular axis by a fixed step size or to move it continuously until the user kills the 

motion explicitly. The motion of all the motors can be stopped at once by pressing the 

END key at any instant. The existing system has the PC23 Indexer card controlling 

the x, y and z axes on the Innovation and the PC23 Indexer card controlling the <P and 

() axes on the Electra PC. The software which governs both of these machines and the 

network access is resident on the Electra PC. 

An example from one of these classes will provide a better understanding of the above 

discussed concepts. Let's consider a member function move() from the class motor. An 

"object" has to be constructed before any of the member functions in any class can be 

used. Since the motors responsible for the () and <P direction of motion of the sample 

positioner are located on the local PC, one has to use the motor class for constructing 

objects to control the motors in these directions. Let's say we want to move in the 

negative <P direction. So, we have to pass the name of the axis and the address of the 

PC23 Indexer card to be used for the constructor to build an object governing the motion 

related to </J. Once an object has been constructed for motion in the <P direction, all the 

functions one would like to perform in the <P direction can be addressed to this object. 

The velocity for moving the sample positioner in this direction has to be set before 

it can actually be moved. It is set by calling object.setvelocity(float(velocity)), where 

setvelocity is the member function of the motor class. Acceleration of the motor is set 

in the same way as the velocity with the only difference being that the member function 

to be used in this case is setacceleration( float). Now the direction of the motor has to 

be set and since we wanted to move the positioner motor controlling the phi direction 

in the negative <P direction, the direction of the motor is set by calling set direction( char 

*) where the char * can be ccw standing for clock-wise direction or cccw for counter 

clock-wise direction of the motor, and for our purpose this should be set to cccw. Then 



www.manaraa.com

17 

one can use either "move" or "move( :float)" member functions for moving the motor 

continuously or for a fixed step size, respectively. A list of the member functions of 

the rmotor class has been provided in Appendix D. These commands can be used in 

controlling the motion of the remote motors. The local motor class commands are the 

same as the remote motor class commands with the only exception that each of the 

classes will have a different constructor and the motor class doesn't have any network 

related commands unlike the rmotor class. 

The motor class has been programmed in such a way that it can handle only ob­

jects whose PC23 cards are on the local machine. Since the PC23 Indexer cards which 

control the motion of the x, y and z motors are on a remote machine, another class has 

to be used and hence rmotor has been implemented. This class will handle objects on 

remote machines, provided one supplies the proper Ethernet address while constructing 

an object for that machine. So, if one wants to move the sample positioner in posi­

tive y direction, firstly an object or an instance has to be created on which one would 

like to perform some operations. So, an object, let's say remote, is created by passing 

the appropriate parameters for the constructor of the rmotor class. Before an object 

which has to remotely accept the data from another PC can be created, proper network 

connection and also reliable data transfer must be ensured. Once the object has been 

created, all the operations on this object will send appropriate commands to the cor­

responding hardware specified while constructing it. Once the instances or objects for 

moving in one of the x, y or z axes have been specified, the functioning of the motor and 

rmotor classes is one and the same with the only difference being that an object can 

use only the member functions of that class which has been used while creating it. The 

member functions of the rmotor class can now be accessed by "remote" and since we 

wanted to move in the positive y-direction, we need to set the velocity and acceleration 

in the same way as we did for (). The direction of the motors is being set by calling 

setdirection( char *), where (char *) can be set as ccw for clockwise direction of motion 



www.manaraa.com

18 

or cccw for counter-clockwise direction of motion of the specified motor. Here it will be 

set to ccw as we wish to move the positioner in the positive y direction. By using one 

of the member functions, "move" or "move( float step)" we can move the motor either 

continuously or by a fixed step size respectively. 

2.3 XR Vision: Image Processing Hardware/Software 

XR Vision [14], [15] is an image processing hardware/software system which can be 

hosted by any PC running Windows 3.11. XR Vision is capable of real time image acqui­

sition and processing. To perform this, the system contains a special purpose computer 

in addition to the host PC. This computer is Data Translation 2867 frame grabber [5]. 

Data is passed between the host and the DT2867 via the AT bus which provides dual 

functionality, the first being control of the frame grabber and the second one is file I/0 

for the frame grabber. MS Windows provides a logical and flexible user interface [10] to 

all components of the system. XR Vision can be configured simultaneously for real time, 

near real time and PC based image processing by simply implementing the appropriate 

control structure in MS Windows and hooking that structure to a MS Windows menu 

item [2]. 

By choosing a menu item, the user initiates a control structure which starts and stops 

operations in the hardware. If for example, a user has a custom filter written in C or 

assembly language he could implement a control structure in Windows to automatically 

acquire an image and return the image to the frame grabber for additional processing 

or for display or for file 1/0. 

There are currently two stationary cameras used in this program. Two cameras are 

connected to the input of the frame grabber for getting the image. With the help of this 

software package, one can grab a real time image and can do some processing to get a 

better picture out of it. 



www.manaraa.com

19 

Average and accumulate are the two methods primarily used in this program for 

acquiring an image from the camera. In the average procedure of acquiring an image, 

the output of the frame grabber will be captured for a set of frames and then the sum 

of the individual pixel values for all the frames is divided by the number of frames to 

get an image which is an average of all these frames. The procedure for accumulating 

an image is the almost the same with the only exception being that after adding up 

all the pixel values, there wouldn't be any division by the number of frames. The grey 

scale value of each pixel of this image is the result of summing up of the individual pixel 

values for each frame. XR Vision program handles both 8-bit and 16-bit images. The 

average part of the program can handle only 8-bit images whereas the accumulate part 

of the program can process both 8-bit and 16-bit images. 

The accumulate part of the program helps in reducing the noise signals generated 

out of the CCD pixel elements and also to increase the contrast of any cracks in the 

material. An 8-bit image out of the frame grabber is accumulated over a number of 

frames in a 16-bit accumulation buffer which can be used for image processing. Even 

though the accumulation buffer can hold 16-bits of data per pixel, the display of such 

an image is limited by the fact that there aren't any commercial VGA display monitors 

which are able to display 16-bit images. Hence, the images have to be normalized and 

converted into 8-bit images before they can be displayed. 



www.manaraa.com

20 

3 XRSCAN: THE NEW SOFTWARE DEVELOPED 

The current versions of XR Vision and RMover programs are stable versions currently 

hosted by a PC running Windows 3.11. If one wants to use these programs for acquiring 

multiple scans, then the amount of time involved in such sort of scans will be prohibitive. 

If the amount of manual intervention in such sort of scans is negligible, automating 

the entire scanning procedure would be good idea. The following section explains the 

principal drawbacks of the two existing software packages and the latter part of the 

chapter will describe how they have been overcome. 

3.1 Drawbacks of the Current Programs 

Although RMover is a stable program, the principal feature lacking in that system 

is the display of the sample positioner's relative distance from a reference point. If one 

doesn't know how far the positioner has been moved in a particular direction, then one 

can never be sure whether the positioner has moved for the distance one wished to move 

it by. This feature of displaying the relative distance by which the sample positioner has 

moved in each direction is a primary feature an end user wants to be incorporated in 

the program. Each of the sample positioner controlling motors has a home switch which 

when enabled will preset a reference position for each motor and whenever a motor 

is sent to go home, the motor will move depending upon its current position until it 

encounters the reference position, termed as home. 

Using the existing XR Vision program, one can specify the minimum and the max-



www.manaraa.com

21 

imum limit of the 16-bit data to be selected and converted properly to display on the 

VGA monitor. These two variables can be changed with the help of two scroll bars 

which are independent of each other. Since the two scroll bars are independent of each 

other, the selection of the proper values for these two variables is done by the trial and 

error method which not only is a time consuming process but also depends upon how 

lucky one is. 

One more thing of prime concern is that these two software packages are separate 

making it difficult to use them simultaneously. Hence a good program will be one which 

will incorporate these two programs into one with all the functions in the two software 

packages included, thereby enabling the user to perform all the functions under a single 

interface. The current research provides such an interface where the user will have the 

control over the sample positioner using the motion control part of the interface, over 

image processing under the image acquisition part and over the X-ray generator settings 

in the X-ray generator section of the interface. 

The current project also takes into consideration another aspect of the real-time X­

ray scans, automation of real-time X-ray scans. If an object has to be scanned for a 

number of times with little change in many of the parameters associated with the motion 

controller and X-ray generator settings, the amount of time it takes to finish such a job 

manually will be too prohibitive. Reducing the amount of human intervention in such 

kind of jobs to the bare minimum will present the end user a high degree of flexibility and 

uniform repeatability. If there is a file where in an end user can type in all the commands 

which he otherwise had to perform manually, a program can accept the commands from 

this file and execute one command at any point of time. The time involved in this 

method of testing will be decreased and also the testing is done automatically without 

much human intervention. This aspect of automation software has been developed to 

handle this and has been incorporated into this package. This will be explained in 

greater depth in the next chapter. 



www.manaraa.com

22 

3.2 Software D eve lopme nt 

The res t of the chapter will cover the aspects of the new software program in terms 

of its user interface and background actions (what happens if one clicks a button on a 

particular window) related to the sample positioner, image processing and X-ray gen­

erator controls. F igure 3.1 shows the pa rent window which will be displayed upon the 

execution of this program. Clicking on the menu item, ReaL Time SetUp, will invoke a 

dialog box [10] partitioned into three different sections: namely, Motion Control, Image 

Acquisition and X-ray Generator Options as shown in Figure 3.3. The other menu item , 

ReaLTime Scan, when selected will initiate a vvindmv which will have controls for au­

tomated scans (the prime objective of this research) and is shown in Figure 4.1. This 

other aspect of the program is explained in detail in the next chapter. 

Figure 3.1 Program main window 

3.2.1 Motion Control 

The motion control part of the control program builds two types of objects for con­

trolling all the 5 motors. The program w.ill read a configuration file, motors .cfg (shown 

in Appendix A), whi ch contains the details pertaining to the motors with a line for 

each of the motors. For each motor, the details wi ll be whether the P C23 Indexer card 

controlling the motor is on the local machine or on the remote machine, address of the 

P C23 card and the number of the motor. Once the file has been successfu lly read , two 



www.manaraa.com

23 

types of obj ects will be constructed, one for remote Indexer cards usmg the rmotor 

class and the other one for local P C23 Indexer cards with the help of the motor class. 

Thereafter , one can use a ll the functions of the above two classes on these objects (note: 

objects built using a part icula r class can use only the public member functions of that 

class) for the proper movement of t he sample positioner. Figure 3.2 shows the axes the 

sample positioner can move with directions indicated by arrows. 

-Z 

-Y +Z 

v 
+Theta 

Figure 3.2 Direction of t he axes 

The existing mot ion control program as discussed in section 3.1 doesn 't have any 

option displaying hovv far the sample posit ioner has moved in a particular direction 

after a command has been issued for it. to move by some distance. T his capability 

has been incorporated in the present program as shown in the i\lfotion Conlml part of 

F igure 3.3. The edit boxes [2) under the R elative Position t itle show the di stance the 

sample positioner has moved in a part icular direction for each of the five directions. 

This program has the capabili ty of updating the distance while the sample posit ioner is 

in motion. The current position of the sample positioner when the program is star ted 



www.manaraa.com

24 

will be treated as the reference position for all the motors for all the directions. If 

the sample positioner is moved by some distance in a direction, the relative position 

fields will display the distances from the reference position to the current position of the 

positioner with continuous updates. If the NEW REF button is selected, the program 

will mark the current position of the sample positioner as the new reference position for 

all the directions. From there on, the distances are measured from that new reference 

position for the sample positioner. The program also features a H button which upon 

clicking will make the corresponding motor go to the home position (a fixed reference 

position). There is an individual button for each of the motors to send it home. 

Now comes the main part of the motion control section of the program. Under 

the Distance title, there are five edit boxes wherein one can enter a number specifying 

the distance by which one would like to move the sample positioner in a particular 

direction. This mode of motion is called fixed mode. Clicking on the C/F buttons 

makes the corresponding motors toggle between the continuous and fixed modes. In the 

continuous mode of motion, the sample positioner will move in a particular direction 

until the user stops the motion of the motors explicitly. This can be done either by 

pressing the STOP button or by pressing the right mouse button. The program also 

features a P /R button for each axis which a user can use to pause the motion of any 

motor in any particular direction. This button toggles between the pause and resume 

modes, where in the former case, the motion of a motor in a particular direction will be 

paused till the user explicitly clicks on the corresponding resume button. This feature 

has been incorporated to give a high degree of freedom for the user. 

The + and - buttons next to each edit box of distance control will provide the motion 

in the positive and negative direction of an axis respectively. By clicking on a+ one can 

move a motor in the positive direction of the corresponding axis, and in the negative 

direction by clicking on the - button. The Motor Options button, when clicked, will 

invoke a window (shown in Figure 3.4) with fields for typing in the required speed and 



www.manaraa.com

25 

Figure 3.3 Setup window incorporating the t hree different packages 



www.manaraa.com

26 

acceleration for each axJs. Using this window, one can even select between the metric 

and English system of measurements. This will enable t he user to have the capability 

of moving the x, y and z motors either in inches or ems and the <P and () either in 

milli-radians or degrees. 

Figure 3.4 Options window for speed and acceleration settings 

This option of selecting between the English and the Metri c systems is for the con­

venience of the user to specify the uni ts of motion. Since the motors can accept only 

a number specifying the number of steps it has to move, it is up to the programmer to 

convert either the metric or English system uni ts into appropriate number of steps and 

send it to the corresponding motor. 



www.manaraa.com

27 

3.2.2 Image Acquisition 

This part of the program will control the image processing part of the scan. Much 

of this part has been derived from the existing XR Vision program for image processing 

[14], [15]. The Image Acquisition part of the program features two individual buttons 

titled Average and Accumulate (see Figure 3.3). The Average part of the program 

can handle only an 8-bit image whereas the Accumulate part can process both the 8 

and 16-bit images. Two cameras serve the imaging needs at the center; namely, scan 

camera and surveillance camera. The image acquisition part of the program reads the 

camera configuration file (provided in Appendix A) to list the available cameras in the 

appropriate combo boxes of figures 3.5 and 3.6. This facilitates adding other cameras 

to the system with appropriate port numbers for each of them. With the help of the 

surveillance camera one can see inside of the X-ray room to make sure everything is 

intact. The scan camera is used to collect the radiations for real-time image processing. 

The port numbers of each camera specified in the camera configuration file are stored in 

a structure. The program reads the structure to get the correct port number (or channel 

number) for a selection in the combo boxes. 

3.2.2.1 Average 

The window which will pop up when the Average button of the setup window is is 

pressed, is shown in Figure 3.5. It features a combo box [10] which enables the user to 

select between the two available cameras (scan camera and surveillance camera in the 

present situation). The No. of frames field in the window will be used to set the number 

of frames one would like to grab and average. The default value of this has been set to 

20. This value can be set to any number between 1 and 256. 

Upon selecting the acquire button of the average window, the program will read the 

number of specified frames and will divide the sum of the individual pixel values (for the 



www.manaraa.com

28 

ACQUIRE 

Figure 3.5 Interface of the frame averaging window 

number of frames specified in the window) by the frame count specified , to obtain an 

averaged image. The averaged image can be saved either into a buffer or into a file at the 

same time. There are two 8-bit bufFers on t he frame grabber board which are referred 

to as bufl"erO and bufl"erl. Selecting the save to a .file option would open a dialog box 

prompting one to type in the name of t he file one would like to save the image into. The 

LIVE button when selected will connect the display moni tor to the camera selected in 

the combo box and will give constant video signals from the camera to the VGA display 

monitor at the standard rate of 30 frames per second. 

3.2.2.2 Accumulate 

The accumulate portion of image acquisition controls the processing of images of 16-

bi t length and 8-bit length as well. Figure 3.6 port rays the interface of the accumulate 

window which wi ll be popped upon clicking on the A ccumulate but ton in the Setup 

Window. The camera selection, number of frames and the LIVE but tons when selected 

will perform exactly as the corresponding ones in the A vemge window. Another primary 



www.manaraa.com

29 

feature of this program is the ability of displaying the histogram of the grey scale values 

of the pixels in an image. The histogram window is activated upon selecting either the 

GRAB or the SUBTRACT buttons. \iVhen a user acquires an image by accumulation, it 

will be saved into one of t he 16-bi t buffers and it is this data which one uses to display 

Figure 3.6 Accumulate window 

the histogram. A histogram (shown in Figure 3.7) is a graph with the pixel count on the 

Y-axis and the pixel grey scale value on the X-axis. The saved data in one of the buffers 

can range anywhere from 0 to 216
. Since a PC monitor can be able to display up to a 

maximum of 640 pixels on a hori zontal scale, there must be a way of translating this data 

presenting it conveniently on the computer monitor in the form of a histogram. This 

is done by using the histogram library functions supplied with the DT2867 board. T he 

sensitivity of real-time X-ray inspection system is based on several factors [15]; spatial 



www.manaraa.com

3734 

2801 

1867 

933 

0 12800 25600 

Left Slider 1:£1 I .1 H~) 

Right Slider 1:_+1 L ila 

"' \......__.r 

38400 51200 

l~ce!] 1 

Figure 3.7 Histogram of an image accumulated over 256 frames 

c.v 
0 



www.manaraa.com

31 

variation in the response of the image intensifier and CCD camera are the prime ones. 

There are two types of variations limiting the sensitivity of real-time X-ray inspection 

systems; systematic and random variations. Due to the random variations, a single 

accumulated image is not a true representation of a sample and an image acquired over 

a specified number of frames will eliminate them. But, the systematic variations are 

inherent in the hardware. In order to counter them, images of a sample are accumulated 

over a specified number of frames and then subtracted with the incoming measurements. 

If the material is uniform all over, then subtracting the image from the accumulated 

image should result in a perfect zero scale value for each of the pixels. So, in order to 

make the crack stand out, the material is moved a little (upwards or downwards) and 

subtracted from the incoming images of the sample from its new position. Owing to the 

difference in the density of the material at the crack and rest of the sample, the crack 

will markedly be distinct. The variation in radiometric sensitivity of the individual CCD 

pixels can easily mask a low contrast flaw indication. The responses can be corrected 

using a calibration image and subtracting the calibration image in real-time from the 

incoming measurements. This is done by using a single 16-bit accumulation buffer. 

Initially, the program integrates the number of frames of measurement into a 16-bit buffer 

(This is being done by the GRAB button of the accumulate window). Then, a calibration 

field is established, which is used to decrement the accumulation buffer (performed by the 

SUBTRACT button of the window) by the same number of frames and the resultant 

image can be viewed using hardware divide and offset circuitry. Experiments have 

proven that this type of calibration with 16-bit precision can dramatically increase the 

sensitivity limitations of the real-time X-ray inspection systems [15]. 

As soon as the GRAB button is pressed, the program will get the current selection 

of the camera from the accumulate window for image acquisition. Then, it will acquire 

an image for the specified number of frames from the camera selected. The GRAB and 

SUBTRACT buttons, when clicked, will invoke a window displaying the histogram of 



www.manaraa.com

32 

the data saved in the 16-bit accumulation buffer. The histogram window also features 

two sliders which can be used to select a region of grey scale values for image display 

on the monitor. The principal reasons for the sliders over the histogram are to provide 

a visual interface of the range of the grey scale values currently being displayed on the 

monitor and to have the flexibility for the user to select his range of grey scale values. 

The images which are acquired after using either of the functions, GRAB or SUB­

TRACT, can be saved to a file. The images can be saved in 8-bit or 16-bit formats. 

Clicking on either of the buttons, save-8 or save-16, will pop open a window wherein 

a user can type in the file name which is to be saved. An 8-bit image can be saved in 

PGM format and a 16-bit image in XRV format. A PGM file allocates one byte for each 

pixel whereas an XRV file saves data related to each pixel in two bytes. In simple terms, 

the size of an XRV file is twice the size of a PGM file. Appendix B shows the source 

code for creating and saving an XRV file. 

3.2.3 X-ray Generator Control 

Increasing inspection demands owing to the more efficient usage of materials are 

increasing the complexity of information required from an inspection. This implies more 

complex data acquisition often from a large number of expensive custom acquisition 

boards. With fewer resources available and multiple users wishing to access them, the 

need arises to make resources multi-user accessible. Extensive research in NDE came 

up with a variety of techniques which use different X-ray equipment like generators, 

cameras, detectors, sample positioner, data acquisition board, etc. Since most X-ray 

equipment are enclosed in lead shielded vault for safety, they must have an option of 

being remotely controlled for the enhanced safety of the user and also to change the 

equipment settings from where one can see a real-time image. The phenomenal growth 

in the network area client/server design methods makes it possible to make a single 

resource available to multiple users. 



www.manaraa.com

33 

X-ray data acquisition hardware are single user and manually controlled devices. 

The steep increase in price and usage of these equipment motivates one to make them 

accessible to multiple users remotely, and the applications of networks enables this. By 

using remote control capability the exposure to radiation can be reduced. Using the 

computer control of X-ray equipment one can impose maximum threshold values for the 

equipment settings, so that whenever a user tries to increase them beyond a limit, the 

program warns the user and makes the source non-functional for these values. This X­

ray generator control part of the program takes care of the remote control of the X-ray 

generators over the network. The user can choose from a set of generators which are 

listed in the combo box [2] of the X-ray generator control part (see Figure 3.3). Before 

the setup window comes up, the program will look for a configuration file containing the 

details of the generators. A sample generator configuration file is shown in Appendix 

A. The details include the name of the generator, maximum kV, maximum rnA range 

and the port id, through which data transfer to a remote machine takes place. The 

program will read the configuration file one line at a time and stores the values of these 

parameters into a structure and will access them when needed. 



www.manaraa.com

34 

4 AUTOMATION OF REAL-TIME SCANS 

The success of the X-ray method in scanning materials for crack detection is heavily 

dependent upon the orientation of the opening and on the width of the opening. If the 

X-ray beam is not aligned properly in the direction of the crack opening, then there is 

every chance that the crack can go undiscovered. In order to eliminate that uncertainty, 

a sample has to be scanned in different orientations with reference to an axis. Film 

radiography will be cost prohibitive and also time consuming for such sorts of scans. 

Real-time scans provide an answer for these sorts of scans, where one can repeatedly 

scan a sample with variation in many of the parameters associated with the scan. If 

the amount of human intervention in such sort of monotonous scans can be reduced to 

a bare minimum if not eliminated entirely, automation of the entire scan procedure will 

be a good idea. This is the idea behind this project. This chapter explains in detail the 

implementation of this automation of the real-time scans. Figure 4.1 shows the window 

which handles the automation of the real-time scans. 

4.1 Basic Setup 

The automated part of the program should be capable of controlling the sample 

positioner, X-ray generator and the image processing hardware and software. So, the 

PC23 Indexer cards responsible for motion and the DT2867 board responsible for image 

processing must be initialized before the program can actually be used, and since the 

program features the manual part along with the automated part, initializing them once 



www.manaraa.com

35 

'6 1 MJiid ·~ 

Jl Scan Window 

Scan Parameters I .................. 

SCANNING FILE IC:\USERS\MADHU\MOTION\TRY.SCNf 

SCANNING COMMAND iY:"AxiSS[ II. STA~TSCA'i-! '"I 
SCAN STATUS lt¥1 10 lEi IL p~~E-SCAN '~;J 
COMMAND LINE NO. 2 

IFON~~NUE SCAE :J 

IIT~~-~!=.L .~£A~f1 

DEFAULT SCAN FILE: c:\users\madhu\motion\test.scn 

Figure 4.1 Automatic scan window 

will be enough. The program upon execution ini tializes the respective boards and they 

are accessible to the program till t he program is quit . The program creates 3 different 

objects based upon the constructors of the motor, rmotor and dt classes. T he created 

objects can be used extensively both by t he automated and manual sections of the 

program without duplicating one for each part of the program. 

The program upon execution looks for a default file in the current working directory. 

This file contains various operations which t he program can interpret and also serves as 

a reference of the available functions of the program. T his file should be in the same 

working directory as the executable of the program is. A sample default file is provided 

in Appendix C. Care must be taken while editing the default scan file. All the automatic 



www.manaraa.com

36 

scan files must have an extension of ".sen" to distinguish them among other files. As a 

safety measure, the X-ray generator has to be turned on manually before any automatic 

scan can be started. 

4.2 Functionality of the Program 

The scan window provides a menu (scan parameters) with four different choices of 

selection: namely, Load a default file, load a file, edit a file and quit. The first two menu 

choices will enable the user to load a file, with the first one to load a default file and the 

second to load a file of the user's choice. The automatic scan window displays the name 

of the default scan file which the program is using. Since the needs of all the automatic 

scans will not be alike, there should be a way by which the user should be able to load 

a file of his choice in addition to the default file. This capability of loading any file with 

a ".sen" extension has been incorporated into this program. The program also provides 

the facility of editing an existing file. A file can be edited as many times as one wishes 

to during the course of the execution of the program. If the edited operations of any file 

are to be performed, the changed file must be saved before the program can read that 

file. An option to do this has been provided in the edit window which will be opened 

when the edit a file option of the menu of the scan window has been selected. Finally, as 

the name says, the last menu option Quit will close the scan window (shown in Figure 

4.1) and control will be returned to the parent window. 

The scan window as can be seen from Figure 4.1, has five fields on its window 

displayed when opened. They are, Scanning File, Scanning Command, Scan Status, 

Command Line No. and Default Scan File. As the names suggest, Scanning File and 

Default Scan File commands display the current scanning file and the default scan file, 

respectively. The Scan Status uses a scroll bar [10] to display the current status of the 

processing of the file. Command Line No. displays the line number which is currently 



www.manaraa.com

37 

being processed by the program. 

The program must be supplied with a valid file name either by selecting the default 

file or a file of the user's choice. The program will check for the validity of the file upon 

clicking on the start scan button and further execution of the program is contingent upon 

the validity of the file contents. If everything associated with the file and its contents is 

appropriate, the program will read the contents of the file one line at a time and will split 

the line into five equal parts. The first one being the command itself and the remaining 

four will be the arguments needed for the functioning of the command. Currently, the 

number of parameters to be passed along with the command has been set to a maximum 

of 4, but could be varied if necessity arises. Though space has been allocated to pass 

four arguments along with a command in a single line, it is not necessary to pass all four 

arguments with each command. If there are any parameters whose values have not been 

specified in the command line, they will be interpreted as zero. Also, as soon as this 

button is selected, the program will parse through the scan file to get the total number 

of lines in the file. This number will be used to set the range of the scroll bar which 

depicts the status of the processing. A counter which is initialized to "0" is used to 

display the line number currently being processed. This counter value is incremented 

in steps of 1 and will be checked to be sure that the counter value doesn't exceed the 

total of number lines in the file. In order to make sure that the program executes only 

one line at a time, a subroutine "moto_check()" has been defined. After reading every 

line from the file this subroutine will be called to check for the motion of all the motors 

and the next line is read only after all the motors have been halted. This will take care 

of the motion part. The Data Translation board for image processing is supplied with 

a status bit to see if the board is busy with any operations requested previously. The 

same subroutine checks this status bit and will wait until the board is not busy. Also, 

the subroutine features a flag. The program will read the next line only if this flag is 

set to 1. So, this flag will be set to 0 as soon as the program control is switched to the 



www.manaraa.com

38 

subroutine. This flag will be set to 1 just before the control of the program is shifted 

back to the main program. Since the subroutine is called once after reading every line, 

this will make sure that the program executes the command issued in the current line 

and is ready to read the next line. 

The first parameter of the line will be interpreted as the command to do some action 

and the program will search among all the possible list of commands. If the command 

doesn't match any of those in the list, no action will be taken in that case and the 

program will give out a warning message saying that the command typed in a file is not 

in the acceptable format. But if it does match, the program will perform the necessary 

action by taking in the necessary arguments supplied along with the command. 

The pause scan button when clicked will stop processing the file specified until ei­

ther the continue scan button or the cancel scan has been selected. This feature of the 

program is crucial because during the processing of the file if the sample positioner hap­

pens to bump into something (which is very much a reality in some cases) or if there is 

any cause of alarm due to any precarious situation inside the room enclosing the X-ray 

generators and the sample positioner, then one will be forced to halt whatever opera­

tion he/she is doing before any action can be taken. A flag will be set for performing 

this operation which when set to 0 will halt any further processing of the file and the 

processing of the file will be done only when this flag is set to a 1. Before halting the 

processing, the program will finish executing the current instruction and the processing 

will be halted from the next command onwards. The pause scan command stops execu­

tion after finishing the current instruction and the cancel scan command terminates the 

execution of the program immediately. 

So, after pausing the processing of a file, there should be a way by which one can 

resume the processing of the file again. This is handled by the continue scan button. 

When clicked, this button will set the flag to 1 and will resume the processing of the 

file. This functions in almost the same way as the start button with the exception of the 



www.manaraa.com

39 

position of the file pointer. The start button when clicked on will start processing the 

file one line at a time always from the beginning of the file, whereas the continue scan 

will 'remember' the position of the file pointer when the pause scan button was clicked 

and will continue processing from that line. Finally, one can cancel a particular scan at 

any point of time by just clicking on the cancel scan button. 

A sample default file which is currently under use is provided in Appendix C. This 

default file is for demonstration purposes only. It provides a reference to the user about 

the contents of a typical scan file. In order to ensure the safe operation of the program, 

the distances by which the motors are to be moved are set to zero. Let's look into 

the default file to see how the file is being read and executed by the program. The 

program reads one line at a time and splits it into 5 arguments. The first one will be 

interpreted as the command and the remaining as the arguments to aid the functioning 

of the command. Upon clicking the start scan button, the program will read the first 

line of the file and since the first line has only two arguments, frames and 20, the first 

argument will be interpreted as command and the second one as data needed for the 

command. This line will set the number of frames for any image acquired after that, 

until the frame value is changed again by passing another command like this. Then the 

program will read the second line of the file and will interpret X_ Axis as the command 

and the next argument as the amount of distance the sample positioner has to be moved 

in this direction. Since the objects for remote and local motors have been created already 

(i.e., during the execution of the program), those objects can be used here for moving 

the sample positioner. Similarly, the other commands for moving the sample positioner 

in other axes will be handled. For safety reasons zero is passed as the argument for 

all the motors in this demonstration file. The sample positioner distances, by which it 

has to be moved can be specified either in inches or in em units (for moving the sample 

positioner in linear direction) and in degrees or mill-radians (for rotational motion) using 

the /nchtoMM and DegtoRad commands, respectively. If 1 is passed as the argument 



www.manaraa.com

40 

to these commands, inches and degrees are selected for the translation and rotational 

motions. If 0 is passed, em and milli-radians are selected as the units of motion. Since 

the default file has the second argument as 1 for both the commands, the units of motion 

are set to inches and degrees. The acceleration and velocity of the motor to move in the 

direction of X-axis are specified using the X_accl and X_ Vel commands, respectively. 

The default acceleration and velocity are set to 1 and 0.1. The rest of the motors are 

handled in a similar manner. In this file, the velocity and acceleration of all the motors 

have been set to the default values. 

One can acquire an image in two types of modes, accumulate and average. The 

average and accumulate commands are the same as the ones used in the XR Vision 

program. The average mode will average the specified number of frames for the specified 

camera and will display the averaged image onto the monitor. The accumulate mode 

of image acquisition will accumulate the grey scale value of the individual pixels for 

the specified number of frames up to 16 bits. After acquiring an image through one of 

these methods, it can be saved in PGM or XRV format (note:Averaged image can be 

saved only as a PGM file while the Accumulated image can be saved in either of the two 

formats). Using the LoadPGMFile command one can open a specific PGM file and can 

induce some delay into the program before loading another PGM file onto the monitor, 

by using hang command. The hang command makes the program wait for the specifed 

number of seconds (which will be passed as an argument in the file) before executing 

any other command. 

Now comes the X-ray generator part of the automation program. The current and 

voltage settings of the individual generators can be set using the A-GenSetting and 

K-GenSetting commands. The commands have to be supplied with the name of the 

generator and a number as the first and the second arguments of the command. The 

program will check to see if the specified generator is available or not. If it is a valid 

one, the second argument on the line will be read and the voltage or current value of 



www.manaraa.com

41 

the specified generator is set to the defined value. Before setting the current/voltage for 

any generator, the program compares the maximum current/voltage/power ratings with 

the specified value and checks if it is within the limits. This is to ensure the safe usage 

of the X-ray generators by not exceeding their maximum ratings. 



www.manaraa.com

42 

5 RESULTS, CONCLUSIONS AND FUTURE WORK 

As a test of this program, various samples have been scanned, using the automated 

part of the program and also using the RMover and XR Vision programs. A scan of a 

typical sample using this program is described in the next section. Also, the time gained 

by using this program over the RMover and XR Vision programs used together has been 

measured. The conclusions section of this chapter gives a broad picture of what has 

been done in this research, and the future work section will describe several ideas as to 

how this program can be extended for an efficient usage of its features. 

5.1 Results 

Figure 5.1 shows a sample constructed by riveting together two sheets of aluminium 

0.04 inch thick to represent a structure commonly found on the skin of airplanes. The 

sample has two cracks on either side of the central rivet with each measuring up to a 

length of 102 and 97 mils (one thousandth part of an inch). The sample positioner was 

37 inches away from the detector and was 7 inches away from the X-ray generator. This 

gave a magnification of about 5. The sample has been scanned for 200 frames using the 

FXE Generator set up at 45kV and 650J.LA. In order to reduce the noise signals coming 

out of the CCD pixel element and also to have a better contrast of the crack with the 

material of the body, the acquired image is subtracted by moving the sample a little 

upwards and the resultant image is saved in a file. Then the sample mounted on the 

sample positioner is moved along the ¢ axis in a range of+ 15 and -15 degrees to obtain 



www.manaraa.com

43 

the best alignment of the crack with the X-ray beam. The RMover program on average 

took a minute to align the sample for each step size of ¢ . In total, the RMover program 

took 30 minutes to scan this object for an entire 30 degrees of Phi rotation (at a step 

size of 1 degree in the direction of ¢. If the crack is much narrower, then one might need 

to 

Figure 5.1 Visual image of a sample aluminium panel used in the studies 

go at a sm aller step size). Apart from moving the sample, it took about an hour for 

acquiring, subtracting and for processing the image after it had been acquired. So, in 

total it took 90 minutes to scan a sample. T he same sample has been scanned for the 

same step size using the automated program. The portion of the scan file used for the 

scan is shown below. 

Frames 200 



www.manaraa.com

Set Camera 

Accumulate 

Z_Axis 

Subtract 

SavePGMFile 

Phi_Axis 

Accumulate 

Z_Axis 

Subtract 

SavePGMFile 

SavePGMFile 

Phi_Axis 

Accumulate 

Z_Axis 

Subtract 

SavePGMFile 

Phi_Axis 

Accumulate 

Z_Axis 

Subtract 

SavePGMFile 

Phi_Axis 

44 

Scan_ Camera 

-0.1 

c:/users/madhu/motion/results/samp3p1.pgm 

1 

0.1 

c:/users/madhu/motion/results/samp3p2.pgm 

c:/users/madhu/motion/results/samp3p16.pgm 

-15 

-0.1 

c:/users/madhu/motion/results/samp3n1.pgm 

-1 

0.1 

c:/users/madhu/motion/results/samp3n2.pgm 

-1 



www.manaraa.com

SavePGMFile 

Phi_Axis 

Accumulate 

Z_Axis 

Subtract 

SavePGMFile 

45 

c:/users/madhu/motion/results/samp3n14.pgm 

-1 

-0.1 

c:/users/madhu/motion/results/samp3n15.pgm 

The frame count has been set for 200. The sample is initially positioned at a zero 

reference position with respect to <fraxis. The sample then is accumulated for 200 frames 

and then it is moved by one-tenth of an inch in the direction of z-axis (positive or 

negative depending upon the present position of the sample positioner) where a new 

image is subtracted from the previously accumulated image. The subtracted image is 

then saved into a PGM file for future reference. The sample positioner has been rotated 

for a total of 30 degrees with fifteen degrees on either side of the zero-reference position. 

Using the automated program, the same scan took fifteen minutes. Adding the overhead 

as another five minutes for typing the commands in a file, the automated program takes 

a total of 20 minutes. This shows an overall improvement of 450% using this program 

over the two programs, XR Vision and RMover. Figure 5.2 shows the accumulated 

image of the sample over 200 frames. As can be seen from the figure, the cracks on 

either side of the central rivet are not visible in this method. This can be attributed to 

the systematic and random variations of the CCD pixel elements (refer, section 3.2.2.2). 



www.manaraa.com

46 

In order to have a better contrast of the crack wi t h the rest of the sample material, some 

image processing techniques have to be applied. Hence, the image of the same ri vet after 

it is accumulated over 200 frames has been moved laterally upwards by one-tenth of an 

inch a nd then subtracted from the incoming measurements [15]. T he resu ltant image is 

shown in figure 5.3. The crack is now visible on either sides of the ri vet. 

Figure 5.2 An accumulated image before subtraction 

5.2 Conclusions 

The research work described in t hi s thesis was motivated by some of the requirements 

in the field of X-ray based nondestructive testing and the limi tations of existing systems 

in meeting these requirements . The principal advantage of this research is for those scans 

where one has to repeatedly do the same operations on a sample. As a part of this re­

search , t he two software packages XR Vision and RMover are used extensively to develop 

a module which can ha ndle image processing and motion control, both manually and 



www.manaraa.com

47 

Figure 5.3 Accumulated image after subtraction 



www.manaraa.com

48 

automatically. The new XRSCAN program enables the user to select between manual 

and automatic scanning of parts at will. This project has demonstrated the capability 

of using the available member functions in the three classes; namely, rmotor, motor 

and dt. Also, other classes can be added if needed. Histogram display of a 16-bit image 

has been developed and the sliders on the histogram enable one to select the grey scale 

range to display over the monitor. The motion control part of the program provides the 

facility of setting the mode of motion (continuous and fixed), sending the motors home 

and also the selection of reference position. This program also features the continuous 

display of the sample positioner distance from a reference position. The program also 

provides the user with an option to select between the English and Metric system of units 

for specifying the velocity, acceleration and distances. The X-ray generator section of 

the manual part can be used to set the Generator k V and rnA settings. 

As the primary focus of the research work, an automated version of all the operations 

available in the manual setup mode have been developed. Using the current automated 

program one can acquire multiple scans at various positions of the sample positioner 

in very short time and can save the acquired images in either 8-bit or 16-bit format 

for future reference. Most commands which are available in the manual mode are also 

available in the automatic mode. 

5.3 Future Developments 

This research demonstrated the capability of automating the real-time scans which 

need little or no human intervention. Though this is a small step towards automation, it 

is a much deserved one. The present program can handle smaller objects which can be 

moved into the laboratory and can be placed on the sample positioner. But, considering 

a bigger sample like an airplane, there is a need to move the X-ray generator with respect 

to the sample, contrary to the existing setup where the sample will be moved against a 



www.manaraa.com

49 

stationary source. Hence, the motion control part of the program has to be extended to 

X-ray generators and to real-time detectors, as well. The program should be enhanced to 

handle even other type of detectors. Also, the future plans are to incorporate additional 

image processing processes such as FFT. 

This program doesn't have any knowledge about the appropriate scan step size and 

also about the range over which the sample positioner has to be moved in a direction. 

This can be obtained by using the XRSIM program [3], [17). XRSIM is a UNIX based 

X-windows application for simulation of X-ray scans. XRSIM program features several 

CAD models of various objects which can be simulated for specific generator settings 

of kV and rnA. Also, one can vary the angle of orientation and distance of the sample 

relative to the source and detector using the XRSIM program. These features of XRSIM 

program can be used to obtain simulated radiographs enabling the user to get a good 

idea about the step size for the scans in real-time. Hence, the automation program can 

be linked with the XRSIM program to predict the optimized scans. 



www.manaraa.com

50 

APPENDIX A CONFIGURATION FILES REQUIRED FOR 

PROGRAM OPERATION 

Motor Configuration file 

'* This is the configuration file for the real time motion control 
program. This file must be present at the proper location and any 
comments to be included in future must be included here only as the 
code has been written to handle a single comment section at the top. 
Don't write anything after the 11 */ 11 sign, without knowing what you are 
doing. Presently it has 5 motors. 

************* *' 

5 
LOCAL ROTATION 512 1 
LOCAL ROTATION 512 2 
REMOTE TRANSLATION 890 1 
REMOTE TRANSLATION 891 2 
REMOTE TRANSLATION 892 3 

Camera Configuration file 

I* This is the camera configuration file describing the available 
cameras and their port numbers *I 

2 
Scan_Camera 0 
Surveillance_Camera 1 



www.manaraa.com

51 

X-ray Generator Configuration file 

I* Generator Configuration file with all the details of the generators. 
The format of the file looks like: 

Gen. Name MaxkV MaxmA Port *I 

2 
IRT 320 
FeinFocus 200 

10 100 
0.1 101 



www.manaraa.com

52 

APPENDIX B SOURCE CODE FOR SAVING AN XRV 
FILE 

I* Function for writing a 16-bit image file in Binary Format. This is 
the source code in C for saving an XRV file into a file *I 

BOOL BigFileWrite(HWND hwnd, unsigned short huge * lp!mage, LONG nRows, 
LONG nColumns, LPSTR lpszFilename) 

} 

{ 

HANDLE 
long 
char 
char 
char 

hFile; 
i, nPixels, nBlocks, nRemain, lBytesWritten; 
szP5[3], szRC[9], szMaxGray[4], szSpace[1]; 
szRows[6],szColumns[6],szBlocks[6] ,szRemain[6]; 
szReturn[1]; 

extern unsigned short huge * lpBigimage; 

II Create output file 
hFile = _lcreat(lpszFilename, 0); 

II Compute number of 64k blocks and remainder 
nPixels = nRows * nColumns *2; 
nBlocks = (long) nPixelsiOxFFFE; 
nRemain = nPixels- (nBlocks*OxFFFE); 

II Write the 64k blocks 
for (i=O; i<nBlocks; i++) 

{ 

_lwrite(hFile, lpBigimage+(i*Ox7FFF), OxFFFE); 

II Write the remaining bytes 
if (nRemain != 0) 



www.manaraa.com

53 

{ 

_lwrite(hFile, lpimage+(Ox7FFF*nBlocks), nRemain); 
} 

II Close the file 
_lclose(hFile); 

return TRUE; 
} 



www.manaraa.com

54 

APPENDIX C DEFAULT FILE FOR AUTOMATED SCANS 

Frames 20 
X_Axis 0 
Y_Axis 0 
Theta_Axis 0 
Z_Axis 0 
X_Vel 0.1 
Y_Vel 0.1 
Z_Vel 0.1 
Theta_Vel 0.1 
Phi_Vel 0.1 
X_accl 1 
Y_accl 1 
Z_accl 1 
Theta_accl 1 
Phi_accl 1 
RadtoDeg 1 
InchtoMM 1 
SetCamera ScanCam 
Average 
Accumulate 
SavePGMFile C:\users\madhu\motion\trial.pgm 
SaveXRVFile C:\users\madhu\motion\trial.xrv 
LoadPGMFile C:\users\madhu\motion\1.pgm 
hang 10 
LoadPGMFile C:\users\madhu\motion\1.pgm 
hang 15 
K-Gensetting IRT 0 
A-GenSetting FXE 0 



www.manaraa.com

55 

APPENDIX D RMOTION.H: HEADER FILE LISTING 
THE FUNCTIONS AVAILABLE FOR MOTION CONTROL 

I************************************************************************** 
RMOTION.H 
By Vivekanand Kini 
Update : 08122/93 

**************************************************************************I 
#include <stdio.h> 
#include <time.h> 
#include <iostream.h> 
#include <stdlib.h> 
#include <conio.h> 
#include <string.h> 
#include <dos.h> 
#include <stdarg.h> 
#include "network.h" 

#ifdef WINDOWS 
#include <windows.h> 
#include <windowsx.h> 

#end if 

#ifndef DBooLean 
enum BooLean {MY_FALSE = 0, MY_TRUE = 1}; 

#define DBooLean 
#end if 

II The following code defines a structure called 'Motor' which has data 
II variables as well as certain "member functions". These functions have access 
II to all the data variables within the structure. When we define variables of 



www.manaraa.com

56 

II type 'Motor', that variable gets it's own set of member functions. 
II To call a particular function, the syntax is: variable.member function 
II We can also define one of the memeber functions as a 'constructor' which 
II is called as soon as the variable is declared. The constructor can be 
II used to initialize the structure's data variables. The name of consrtuctor 
II should be the same as the structure variable name. 

class RMotor { 

II Data variables. None of these variables can be directly accessed by user 
protected: 
char name[80]; II name of motor 

BooLean pc23_initialize_flag; II enables resetting of PC23 board when ON 
BooLean message_flag; II enables debugging messages when ON 

int device_id; 
int (*sendfn)(char far*); 
int (*recvfn)(char far*); 
packet spkt, rpkt; 

II Member functions 
II The private member functions cannot be used by the user 
protected: 

II These are a generic set of output routines which can be used instead 
II of printf() for easy plugging of any graphical user interface. These 
II routines would have to modifiedlrewrittern for any user interface. 
II Currently standard DOS & MS-WINDOWS 3.1 is supported. 
void out_message(char *format, ... ); 
void out_warning(char *format, ... ); 
void out_error(char *format, ... ); 

void send_command(int command, char *format = 1111 
••• ) ; 

void recv_response(int command); 

BooLean pc23_initialize(); 

#ifdef WINDOWS 
HWND handle; 
char szAppName[20]; 
#end if 

II These routines form the high level function to be used by programmer 
II for more information about these functions, refer compumotor's pc23 



www.manaraa.com

57 

II indexer guide. the specific command to look up corrosponds to that of 
II comment provided at the end of each function declarations below 
II the general structure of most of the following functions is very similar 
II except for the command string- look at motion.cpp 
II NOTE: 
II ANY FURTHER HIGH LEVEL ROUTINES CAN BE DECLARED HERE AND ADDED TO 
II motion.cpp 

public: 

RMotor(char *c_name, int id); II constructor 
I* 1: pointer to a string containing the name of the motor 

2. device_id on network.h 
4: if MY_TRUE - the board is initialized 

MY_FALSE - the board is not initialized. This is default 
NOTE: when using multiple motors, initialize the board only 

once because each time the motor is initialized, all the 
earlier information is lost. 
This routine initializes the motor variables as follows: 

Mode = normal 
Positioning = absolute 

II 

Velocity= 1.0 
Acceleration= 1.0 

void register_sendfn(int (*fn)(char far*)) { sendfn = fn; }; 

void register_recvfn(int (*fn)(char far*)) { recvfn = fn; }; 

virtual void initialize(BooLean pc23_initialize_flag = MY_TRUE); 

virtual void setmode_continuous(); II MC 
I* the motor is set to move in continuous mode 

this mode is not used frequently 

virtual void setmode_normal(); II MN 
I* the motor is set to operate in normal mode 

this is most commonly used for our applications 

*I 

virtual void setmode_alternate(); II MA 
I* the motor is set to operate in alternate mode 



www.manaraa.com

58 

this mode is not used frequently 

II virtual void setmotor_resolution(int resolution); // MR 
I* sets the motor resoultion i.e. number of steps/inch or degree 

not used frequently 
by default set to 100000 steps/inch and 10000steps/degree 

virtual void setposition_absolute(); // MPA 
I* sets the motor in absolute positioning mode 

used very commonly 

virtual void setposition_incremental(); // MPI 
I* sets the motor in incremental or relative positiong mode 

virtual void setdirection_cw(); // H+ 
I* sets the motor motion clockwise 

virtual void setdirection_ccw(); // H-
I* sets the motor motion anticlockwise 

virtual void change_direction(); // H 
I* changes the motor motion direction 

virtual void setposition_zero(); // PZ 
I* sets the position counter to zero 

virtual void setvelocity(float velocity); // V 
I* 1: velocity of the motor 

sets the motor velocity 

virtual void setacceleration(float acceleration); //A 
I* 1: acceleration of the motor 

sets the motor acceleration 



www.manaraa.com

59 

virtual void setlimit_acceleration(float acceleration); //LA 
I* 1: decceleration when limit switch is encountered 

virtual void setgohome_acceleration(float acceleration); 
I* 1: acceleration when homing 

II GA 

virtual void setbackupto_home(BooLean backupto_home); //OSB 
I* 1: when MY_TRUE- backup to home when home is encountered-default 

MY_FALSE - do not backup to home 

virtual void setactivehome_state(BooLean active_state); 
I* 1: when MY_TRUE- active home state is high 

MY_FALSE - active home state is low - default 

//OSC 

virtual void setfinalgohome_direction(BooLean finalgohome_direction); //OSG 
I* 1: when MY_TRUE- final homing direction is counterclockwise 

- default 
MY_FALSE - final homing direction is clockwise 

virtual void sethomedge_reference(BooLean homeedge_reference); //OSH 
I* 1: when MY_TRUE- final home edge is clockwise side of signal 

- default 
MY_FALSE - final home edge is conterclockwise side 

virtual void move(long int absolute_steps); // D, G 
I* 1: long integer specifying the number of steps to be moved 

moves the motor by the specified number of steps 

virtual void move_inch(float absolute_inches); // D, G 
I* 1: number of inches to move the motor 

moves the motor by the specified number of inches 

virtual void move_degree(float absolute_degrees); // D, G 
I* 1: number of degrees to move the motor 

moves the motor by the specified number of degrees 



www.manaraa.com

60 

virtual void move(void); II G 
I* moves the motor - used in continuous mode 

virtual void limit_enable(); IILDO 
I* enables the limit swicthes 

virtual void limit_disable(); IILD3 
I* disables the limit switches 

virtual BooLean report_limit(); II RA 
I* returns MY_TRUE if limit has been encountered 

MY_FALSE if limit has not been encountered 

virtual void pause_motion(); II P 
I* pauses the current motor motion 

virtual void continue_motion(); II c 
I* continous the current motor motion - used after pause 

virtual void stop_motion(); II S 
I* stops the motion - the motor deccelerates to a halt 
*I 

virtual void kill_motion(); II K 
I* kills the motion - motor sudddenly stops 

use not recommended except during emergency 

virtual void shutdown(); liST 
I* removes the holding torque from the motors 

highly recommended when leaving motors energized for a long 
period of time, reduces heating. 
disabled as soon as any other command is issued 

virtual void gohome(float velocity); II GH 
I* 1: velocity of motion 



www.manaraa.com

61 

sets the motor velocity 

virtual BooLean checkmotion(); II Check motion status 
I* returns MY_TRUE if the motor is moving 

MY_FALSE if the motor is not moving 

virtual long getposition_ab(); II returns the ab pos in steps 
I* returns a long integer with current absolute position of the motor 

virtual long getposition_rel(); II returns the rel pos in steps 
I* returns a long interger with current relative position with 

respect to that last move 

virtual int getaddress(); II returns the board address 
I* returns the adress of the pc23 board 

virtual int getnumber(); II returns motor number 
I* returns the motor number 

virtual void setmessage_flag(BooLean c_message_flag); 
I* 1: if MY_TRUE- enables the debugging messages 

MY_FALSE - disables the debugging messages - default 

#ifdef WINDOWS 
void setwindow_handle(HWND c_handle, char* c_szAppName); 

#end if 
}; 



www.manaraa.com

62 

BIBLIOGRAPHY 

[1] Compumotor. PC23 Indexer User Guide. Rohnert Park, CA, May, 1990. 

[2] James L. Conger. Windows API Bible: The definitive programmer's reference. 

Waite Group Press, Corte Madera, CA, 1992. 

[3] J. Xu et al. Recent developments in the x-ray radiography simulation code: XRSIM. 

Review of Progress in Quantitative Nondestructive Evaluation, 13:557-563, 1994. 

[4] American Society for Nondestructive testing. Nondestructive testing handbook. 

Marlboro, MA, second edition, 1985. 

[5] Data Translation Inc. Data Translation: DT2867 and DT2867-LC Software User 

Manual. Marlboro, MA, second edition, October, 1992. 

[6] Emmett Frank Kaelble. Handbook of X-rays, for diffraction, emission, absorption, 

and microscopy. McGrawhill Book Company, NewYork, 1993. 

[7] Vivekananda Kini. Tomographic inspection systems using x-rays. Master's thesis, 

Iowa State University, Ames, lA 50011, 1994. 

[8] Stanley B. Lippman. C++ Primer. Addison-Wesley Publishing Company, Reading, 

MA, second edition, 1991. 

[9] Microsoft. WINSOCI( Reference Manual. http:/ /www.microsoft.com, 9th July, 

1996. 



www.manaraa.com

63 

[10] Charles Petzold. Programming Windows 3.1. Microsoft Press, Redmond, WA, third 

edition, 1992. 

[11] Sudha Puvvadi. Remote control of X-ray hardware. Master's thesis, Iowa State 

University, Ames, IA 50011, 1995. 

[12] Nutakki Gangadhar Rao. Stereography: A low cost alternative to computerized 

tomography. Master's thesis, Iowa State University, Ames, lA 50011, 1995. 

[13] R.M.Wallingford and J.N.Gray. Use of an X-ray process model to determine crack 

detectability in a multi-layer geometry. Review of Progress in Quantitative Nonde­

structive Evaluation, 12:319-326, 1993. 

[14] R.M.Wallingford and J.N.Gray. Application of Real-Time Image Processing and 

Calibration techniques to Real-Time X-ray NDE. Review of Progress in Quantitative 

Nondestructive Evaluation, 13:755-762, 1994. 

[15] R.M.Wallingford and J.N.Gray. Real-time X-ray image processing; techniques for 

sensitivity improvement using low-cost equipment. Review of Progress in Quanti­

tative Nondestructive Evaluation, 14:871-878, 1995. 

[16] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Publishing 

Company, Reading, MA, second edition, 1994. 

[17] T.Jensen and J.N.Gray. RTSIM: A computer model of real-time radiography. Re­

view of Progress in Quantitative NDE, 14:353-359, 1995. 


	1996
	Automation of real-time X-ray scans
	Madhusudhan R. Midhe
	Recommended Citation


	Automatic of real-time X-ray scans

